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1 Summary

- The research supported under this grant focussed on the accurate com-
putation of compressible leading-edge vortex flows with interpretation and
understanding of the results. To this end, a number of investigations were
undertaken, starting with the conical Euler equation model and concluding
with fu!Iy three-dimcnz icnal Navier-Stokes equation calculations. Consider-
able emphasis was placed on

'Comparisons of Euler with Navier-Stokes calculations to understand
the origins of various mechanismsi

(*'Comparison of calculations with experiments both to determine the
accuracy of the calculations and to comprehend the physical processes)9
and

,Interpretation of the results with the aid of analytical models.

A summary of some of the work is contained in the paper by Murman,
Goodsell , and Malecki [1] presented at Symposium Transsonicum III which
is attached as Appendix I. The major contributions are contained in the
thesis of the participating students, namely:

" Doctoral Students

1. Kennth Grant Powell, Vortical-Solutions of the Conical Euler
Equations [2]

2. Bernard Loyd, A Semi-Implicit Navier-Stokes Solver and its ap-
plication to a Study of Seprarated Flow about Blunt Delta Wings
[3]

" Masters Students

1. Robert E. Malecki, Euler-Equation Calculations for a Cropped-
Delta Wing Using the CYBER 205 [4]

2. Aga Myung Goodsell, 3-D Euler Calculations of Vortex Flows
Over Delta Wings [5]

3. Jorge P~rez-S.nchez, Numerical Simulation of Deceleration of an
Axisymmetric Vortex [6].

Other papers and articles resulting from the research are cited in the fol-
lowing sections and listed in the References section.
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2 Conical Euler Solutions

The conical Euler equation model was adopted to provide a computation-
ally tractable approach for understanding the essential features of vortical
flow represented by inviscid mechanisms. Conical calculations are valid for
steady supersonic freestrearn Mach numbers and bodies which have conical
self-similarity. The wings must have a sharp leading edge so that the Kutta
condition yields a realistic model for the separation point.

The PhD thesis of Powell [2] contains a thorough description of the nu-
merical method, numerous computed results, comparisons with experiments,
and interpretation of the findings. Calculations were done for delta wings
at various angles of attack and yaw, and for delta wings with leading edge
flaps. It was found that to achieve adequate mesh resolution in the region of
the leading edge vortex, local refinement was needed. An embedded mesh
strategy was developed and applied to most of these cases. This is reported
in the paper by Powell and Murman [7]. Figures 1-4 on the following pages
present representative results from this study. These are for a flat plate
delta wing with a 750 leading edge sweep at 120 angle of attack, 80 of yaw
and a freestream Mach number of 1.7.

A parallel investigation [8] involved a comparsion of the conical Euler
equaton results with experiments and conical Navier-Stokes equation cal-
culations. The cases were all for supersonic freestream Mach numbers, but
included three leading edge sweep angles and five angles of attack. Although
the Euler equation solutions predicted the major flow regimes quite well, the
Navier-Stokes solutions were in somewhat better agreement with the data
as might be expected. This paper was selected as the best Applied Aerody-
namics Paper in 1987 by the AIAA.
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3 Total Pressure Loss

A question of considerable interest is what is the origin of the large total
pressure losses in the cores of the vortices, as indicated in Figure 3. The
Euler equations alone do not contain any dissipative mechanism. However,
in their discrete form, both added and implicit artifical viscosity are present
and necessary. A paper was written by Murman, et al [9] which discussed
this issue. The paper contained an error in the cross-flow streamline integra-
tion scheme which led to some wrong conclusions that were later corrected
[10].

The work of Powell [2] conclusively showed that the total pressure losses
are by and large independent of both second and fourth difference damping
coefficients, C2 and C4 respecitvely, as well as grid refinement. The tables
on the following page present these results. Figures 5 and 6 and the tables
indicate that the overall vortex dimensions (width and height) are less sen-
sitive to these parameters than is the region of large total pressure loss (core
size).

Powell proceeded to formulate a theoretical model for the core of a vis-
cous vortex by deriving a self-similarity theory for an incompressible, conical
vortex [2,11]. The model predicted that the total pressure loss is determined
by the magnitude of the swirl velocity at the edge of the vortex, and not by
the magnitude of the viscosity. The total pressure loss is related to the dis-
sipation mechanism, and apparently the numerical viscosity is a reasonable
representation of physical viscosity for some cases. Powell also showed that
the Reynolds number based upon artifical viscosity is so large in the region
of the vortex that it would dominate real visous terms in most Navier-Stokes
calculations. This is discussed further in Appendix I.

Finally, based upon the observation that the total pressure loss in the
vortex might be related to bursting, a preliminary study was done to look
at the effects of decelerating an axisymmetric inviscid rotational flow [6].

05



E2 e. Loss Level Core Size Vortex Width Vortex Height

0.003 0.0010 37.4% 1.00 1.00 1.00

0.003 0.0003 37.6% 0.32 1.10 1.13

0.003 0.0030 38.2% 1.74 1.08 1.02

0.001 0.0010 37.2% 0.71 0.97 1.01

0.010 0.0010 37.6% 1.67 1.11 1.08

Table !: Effects of artificial viscosity level. on loss

Equivalent grid Low Level Core Size Vortex Width Vortex Height

64 x 64 33.9%" 2.55 1.39 1.43

128 x 128 37.6% 1.00 1.00 1.00

256 x 256 35.1% 0.26 0.96 1.05

Table 2: Effects of grid refinement on los

M.=1.10 =100 D= = 0 A='75* 64x64 M..= 1.10 =10 0 =00 A = n5 256x256
Total prmiur Ion Total p mur. lose

0.1.5 0.75
|NOrn 0,0110 IMOi 0.2005.01

0.60 0.60

0.45 0.45

/e0.30 f/a 0.30

0.15 or low "S 0.15 Oe- .e SW

0.00 
0.00

.0.16 .0.15
0.00 0.16 0.30 0.45 0.60 0.75 0.90 1.06 1.20 0.00 0.15 0.30 0.45 0.60 0.76 0.90 1.06 1.20

'1/0 ,1/8

Figures 5 and 6 - Total pressure losses; 64 x 64 & 256 x 256 grids.
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4 Three-Dimensional Euler Equations

Three studies were undertaken [4,5,12] based upon three-dimensional
Euler equation calculations. In the first study, Malecki [41 vectorized an
existing Euler solver for the CYBER 205 and used an 0-0 grid supplied by
Rizzi to compute the flow about a cropped delta wing model tested in the
Netherlands. The study showed that significant levels of artificial viscosity
were needed to obtain an converged solution, apparently due to high grid
skewness.

Goodsell [5] revamped the solver to perform on an O-H grid and pro-
ceeded to compute not only the same transonic cases that Malecki had done,
but also supersonic and subsonic cabes. Representative results of both of
these studies are contained in the paper of Appendix 1 [1].

The third study done by Lee and Murman [12] utilized Goodsell's Euler
solver for a preliminary study of the effects of the vortex from a closely
coupled canard on the following wing. Representative results are given in
Figures 7 and 8.

The three-dimensional Euler calculations showed that the absence of sec-
ondary separation which is not included in the Euler model had substantial
effects on the predicted pressure distributions in the transonic regime, ne-
cessitating the development of a Navier-Stokes model. Supersonic cases are
much less sensitive to this effect [81.
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5 Three-Dimensional Navier-Stokes Solutions

Two studies were done for three-dimensional Navier-Stokes equations.
The first was undertaken by Rizzi who spent a summer at MIT as part of
this project. In this regard, he modified his existing Euler solver to add
the full Navier-Stokes terms, and then proceeded to compare the Euler and
Navier-Stokes results [13] for a round leading edge version of the cropped
delta wing studied by Malecki and Goodsell. Representative results shown in
Figure 9 indicate that the viscous calculations are in much better agreement
with experiments than are the inviscid ones.

The second study was undertaken by Loyd [3,14] who added the thin
layer Navier-Stokes terms to Goodsell's code and used a newly developed
semi-implicit method to solve them. Loyd particularly focussed on the mech-
anisms of leading edge separation for laminar flows over a family of swept
conical delta wings. Detailed analysis indicated both shock-free and shock-
induced separation at the leading edge. The other features of primary and
secondary vortical flows were also observed. A representative result from
this study is shown in Figure 10.

0 9
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Transsonic Vortical Flow

EARLL M. MURMAN, AGA M. GOODSELL', ROBERT E. MALECKIP

Computational Fluid Dynamics Laboratory
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, MA 02139

Introduction

Transonic flow is generally associated with the inviscid fluid effects when a flow with a
freestream Mach number MO. t 1 accelerates to locally supersonic velocities, or deccierates
to locally subsonic velocities, as it moves streamwise past a body. However, transonic flows
can occur in many other circumstances such as on high lift devices at low Moo, at the tips of
helicopter blades, and around comers in ducts. In this paper, a class of transonic flows for
slender, highly swept wings at high angle of attack (a _ 1Oe) will be considered. Under these
conditions, leading edge vortices generally form as shown schematically in Figure 1. If M,. - 1,
the streamwise flow can be transonic in the classical sense, leading to mixed subsonic-supersonic
flow and shock waves on the wing. However, the leading edge vortices create additional transonic
cross flow effects due to the high swirl velocities associated with them.

*03 50
IMAtY I0

WING
STREAMLINE/

SECONCIARY 0
/ IIISRATION

*/~ /PRIMARY
I /SEPARATION 10

PRIMARY
VORTEX

S W E E T %: : .. - :_ : X

Figure 1: Schematic Flow Field Figure 2: Classification of Flow Regimes

The classes of vortical transonic crousfiows are generally correlated in terms of the angle of
attack and Mach number normal to the wing leading edge given by the formulas [1]

a,, = tan-' (tan a sec A) (1)

M.= M. sin a coc at. (2)

where A is the wing leading edge sweep angle. Figure 2 shows a correlation from experimental
data presented and discussed by Miller and Wood [2,3] for sharp leading edge wings. Other flow

'Present address, NASA Ames Research Center, Moffitt Field, CA.
2Present Address, Pratt & Whitney Aircraft Group, Hartford, Conn.



patterns have also been discovered experimentally by Vorropoulos and Wendt [4] and Szodruch
and Peake [5]. A paper in this conference by Narayan and Seshadri (6] further discusses these
flow regimes and also presents results for round leading edge wings. For the latter case, a

S Reynolds number based on some leading edge length scale must also be an important parameter.

Transonic vortical flows are a complex mixture of streamwise and croesflow effects. The
paper by Elsenaar and Biitefisch [7] presents results of an extensive experimental investigation
for a 65* delta wing which serve to illustrate this point. A complete model which can handle
the interacting inviscid and viscous effects undoubtedly requires Navier-Stokes equations, and
one such approach is given by Rizzi, Drougge, and Miller [8]. For sharp leading edge wings, the
separation of the flow to form a primary vortex is fixed by the geometry via a Kutta condition,
and an Euler equation model should be adequate if vorticity is introduced. However, important
viscous effects such as shock wave boundary layer interaction, secondary vortex formation, and
boundary layer transition clearly won't be represented. Although the question of whether such
models can represent vortex breakdown is not settled, numerical solutions seem to indicate
that bursting of the primary vortex is captured if the mesh is fine enough. In principle, a
potential flow with added vortex sheets or filaments as suggested by Desai et al [9] could be
used. However, the direct solution of the Euler and/or Navier-Stokes equations seems more
promising, although more expensive.

In this paper, Euler equation models are considered for sharp edge geometries. The conical
Euler equations are considered first to investigate the croesflow phenomena. Following this
is a discussion of the origin of the vorticity in Euler equation calculations. To conclude the
paper, three-dimensional solutions are presented which combine both streamwise and crossflow
transonic effects. The geometry considered is that reported by Elsenaar and Buitefisch [7].

. Governing Equations

The three-dimensional unsteady Euler equations in conservation form are:

r 1 [uCl Pt 2 1 [UPUP

++ jy + p + p j=o 0. (3)
Pw i"" IW 

ZPW2 + p|
pE u (PE+p) v(pE+p) [w(pE+p)

(u, v, w) = i are the Cartesian velocity components in the z, y, z directions, respectively, p is
the density, E the total energy per unit mass, and p the static pressure given by the equation
of state

---P 1 E- 2 0+w (4)

Unsteady terms have been retained for the iterative procedure used to reach the steady solution.
The tangential flow boundary condition is enforced on the solid body while the Kutta condition
will be enforced implicitly by the numerical method. Freestream conditions are applied far
away from the body.

Introducing the conical variables

=- X 7 (5)

and assuming conical self-similarity (the solution is independent of r), the Euler equations



become

p ,(v -( u)p(u)P 1 p N Pu
___ _ a U V (- 1u)pu - rp a W (- U)pu - p =0.+

PV(v-i~u)pt'+p +~ (W - NPV 1+2 puv 0S(V-u)pw | (W-Cy)pw+p .1
pE (V - 1u)(pE + p) J (Wa - u)(pE + p) J tu(pE + p)J

(6)
These equations are valid for wing geometries generated by rays pawing through the origin and
for Mo > I so that the outer boundary condition is also conical. Again, the unsteady terms are
retained only for the iterative solution process. The equations are solved on the unit sphere by
setting r = 1. Boundary conditions are the same as the Euler equations except that freestream
conditions are applied ahead of the conical bow shock.

Solution Procedure

The basic solution scheme is a finite volume spatial discretization with a multi-stage inte-
gration in time, as proposed by Jameson et al [10]. It will be outlined for the conical Euler
equations. The solution of the three-dimensional Euler equations, which is very similar, is fully
explained by Roberts [11] who implemented the version used in this paper.

The conical Euler equations (6) written in vector form

U + aF + G + H = 0 (7)

at a17 at
may be transformed using the divergence theorem into an integral equation and discretized as

dU,' A
-Ai, +Z [Ftnte + Gen,,] + H13,Ai = 0. (8)

A, " is the area of a computational cell and the summation represents the fluxes through the
four cell sides with normal vectors t = (nt, n,, ) . The flux vectors Fi, G, on the cell sides are
evaluated from simple averages of flux vectors at the cell centers F,,, Gii and Fi±lix, Gi±1j±1

A multistage integration scheme is used to solve the equations in time to reach a steady
state. In order to accelerate the iterative solution, the time step in each cell is determined by
the linear stability criteria for that cell. Since the time steps are different for each cell, the
solution is not time accurate. The tangential flow boundary condition on the body is enforced
by zeroing the convective fluxes in (6) and extrapolating the pressure from the adjacent cell
center, p,., = ph,= .

This scheme requires added second and fourth order damping to capture shocks and damp
unwanted high frequency modes of the discrete solutions. The damping formulation follows
Rizzi and Erikuson [12]. The second order damping is pressure-weighted, and is of the form

D2(U) = v2 [ 6? +(5,

where i and 6, are undivided central difference operators defined by

(Ui, ) = Ui+ , - Ui_ .,, w (U,) = U,, +f - U,,_i. (10)

The fourth-order damping is unweighted, and of the form

D(U) = V4 [s:U + siU]. (11)



The pressure switch in the second order damping is normalized to vary from 0 (A 2) to 1
throughout the flow field, where A is a measure of the mesh spacing. It is designed to turn on
at embedded shock waves. In these calculations it was found that the second difference damping

* needed to be turned on at the wing leading edge. This was done by setting the pressure switch
to 1 in a few cells in this region. Values of P2 = .05 and v4 = .01 were used for the calculations
unless noted.

The added damping terms (9) and (11) together with the basic discretization error from (8)
implies that the numerical calculations represent the solution of a modified differential equation

a Fa G+H t--r~&a( au + a T aU\+] (2\ a a4 a4U]

(12)
where SE, S, are the pressure switches in (9) and A the maximum characteristic speed of propa-
gation of a disturbance = I u + c. The first group of terms on the right hand side represents the
second order damping, the second group the truncation errors, and the third group the fourth
order damping. In the neighborhood of the tip and embedded shock waves, Sf, S - 1 and the
second difference damping is proportional to the first power of the mesh spacing. Away from
these regions, St, S, - A2 and the second difference damping is proportional to the cube of
the mesh spacing. The fourth difference damping is everywhere proportional to the cube of the
mesh spacing. The solutions automatically satisfy the Kutta condition, and. the present authors
believe this is due to the added numerical viscosity.

Conical Euler Solutions

Numerous solutions have been computed for the conical Euler equations for sharp edge
geometries using the method as outlined above or in a somewhat modified form. All the
primary vortex and shock wave structures illustrated in Figure 2 have been reproduced, as well
as other shock structures reported in [4,5]. Secondary vortices due to boundary layer separation
under the primary vortex and vortices created by shock wave-boundary layer interactions are
not modeled by the Euler equations. The most comprehensive presentation of the variety of
solutions which have been obtained may be found in the PhD thesis of Powell [13]. A comparison
of the conical and a three-dimensional Euler solution are given in [14], while comparisons
between the conical Euler and conical Navier-Stokes solutions with data are given in [15]. In
this section, two representative examples will be presented.

An interesting example illustrating the nature of the transonic crosaflow effects is a fiat
plate delta wing with a leading edge sweep A = 750 in a Mo. = 1.95 flow at an angle of attack
a = 25*. The above conditions correspond to M, = .94,a = 61 and fall in the middle
top region of Figure 2. Experimental results for this condition are reported by Monnerie and
Werli [16]. The calculations were done on an 0-type grid which had 128 cells around the wing,
windward to leeward symmetry plane, and 128 cells between the wing and the farfield boundary
outside the bow shock.

The general topology of the fow field is illustrated in Figure 3 by the conical streamlines
which are everywhere tangential to the crosefiow velocity vectors. The view corresponds to
looking upstream from the trailing edge with only the right hand side of the wing shown.
The dominant feature is the sheet emanating from the wing leading edge and spiraling into
the vortex core3 . On the windward side, the attachment line is almost halfway between the

* centerline and leading edge of the wing, while on the leeward side it is at the wing centerline.
3 The blank area in the middle of the core Is due to an inaccurate streamline integration (171 and not an

apparent source as suggested In 18).
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Figure 3: Conical streamlines. Figure 4: Total Pressure Loss.

Contours of constant total pressure loss 1 - (PtPt.) are shown in Figure 4. There are large

losses in the shear layer from the leading edge, and in the center of the vortex the total pressure

loss is 88 %. It can be seen that cross flow shocks are present above and below the primary

vortex and that there is also a shock between the two primary vortices. This latter shock is

observed in the shadowgraph picture from the experiment [16]. The swirling flow accelerates to

ci-ss flow M 3ch number M. = 2.5 above the vortex before passing through the first shock. It

then turns downwards towards the wing reaching M0 = 1.4 ahead of a second shock. The flow

then accelerates to M, = 1.8 on the wing surface under the vortex where it experiences the third

shock. A comparison of the cross flow streamlines and the shock locations will reveal a sort of

transonic nozzle effect for the last two shocks. There is a minimum spacing between the vortex

and the symmetry plane and the vortex and the wing. Examination of the crosflow Mach

number contours which aren't shown here reveals a converging-diverging nozzlelike pattern.
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Figure 5: Experimental pitot pressure. Figure 6: Computed pitot pressures.

Monnerie and Werl6 reported measured pitot pressure (normalized by the freestream total
pressure) values on the leeuide of the wing which are shown in Figure 5. Pitot pressures
computed from the Euler calculations using the Rayleigh pitot formula [19) are shown in Figure

6. The computed values would correspond to a probe which is everywhere aligned with the flow,
while in the experiments the probe was aligned with the wing centerline. Vortical flows have

large flow angularity as illustrated by the swirl angle (ratio of cros flow velocity magnitude to



radial velocity) contours of Figure 7. Generally, pitot pressure measurements are accurate to
within 1% if the -,,w angularity is less than 100 [20]. This is really only true right in the vortex
core region, and the computed (.05) and measured (.06) values are in excellent agreement.

* Throughout the rest of the region there is good qualitative agreement except where the wing
boundary layer and secondary vortex formation dominate.
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Figure 7: Computed swirl angles. Figure 8: Symmetry plane flow angles.

Measurements were also made of the flow angle in the leeside symmetry plane. A small wedge
in the flow was adjusted until the top and bottom shock waves viewed with a shadowgraph were
symmetric. The estimated accuracy 4 is ±2*. Figure 8 compares the measured and computed
values which are in good agreement. The change in flow angularity across the shock spanningO the port and starboard vortices is clear.

Calculations have been done on coarser grids to investigate the sensitivity of the solution
to grid resolution. The following table displays some of these values.

Grid 32x32 64x64 128x 128
q vortex .287 .307 .320
C vortex .445 .470 .438
Normal Force Coefficient .729 .739 .742
Max Swirl Angle 380 400 400
Ma: Total Preesure loe .872 .882 .880
Min Pitot Pressure .075 .052 .048

It can be seen that the position of the vortex, the normal force coefficient, the maximum total
pressure loss, and maximum swirl angle are all insensitive to mesh spacing. The pitot pressure
is somewhat sensitive to grid refinement as the streamwise Mach number in the vortex core
increases with finer meshes. This is consistent with the computed vortex core size becoming
smaller with mesh refinement. In general, the solution on the 128 x 128 grid can be considered
converged except for the size and details of the inner vortex core region[13]. However, its position
and maximum total pressure loss are converged as illustrated in the table. The conclusions are
representative of all our conical Euler calculations for supersonic freestrean flows.

The second example of a conical Euler solution is taken from [15] which presents six different
comparisons between conical Euler, conical Navier-Stokes, and experimental results. Details of
the calculations and comparisons may be found in that paper. The particular example presented
here is for a delta wing with a leading edge sweep A = 75* in a U., = 2.8 flow at an angle of

'Personal commuikation betwes. authors.
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attack a = 8*. These parameters give M, = .82, a, = 28.50 which lie in the left middle region
of Figure 2.
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Figure 9: Total pressure lows, Euler. Figure 10: Total pressure lose, Navier-Stokes.
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Figure : CTp, Euler and data. Figure 12: Cp, Navier-Stokes and data.

A comparison of the total pressure lows contours between the conical Euler and conical
Navier-Stokes (laminar) in given by Figures 9 and 10. The Navier-Stokes model clearly shows
the viscous boundary layer, the secondary separation, and for this case a tertiary separation.
The latter affect the position and shape of the primary vortex by their displacement effects.
However, both the Euler and Navier-Stokes models yield a primary vortex with essentially the
same total pressure loes in the core. A comparison of the surface pressures given in Figures 11
and 12 shows that both models we in reasonable agreement with the data. The effects of the
secondary and tertiary vortex (including their displacement effects on the primary vortex) are
small, but well represented by the Navier-Stokes solution.

Total Pressure Loss

The origin of the total prsuelowe in the Euler eqainsolutions is not immediately

apparent and has been the source of considerable controversy. The total pressure Ioss can

Ia



equivalently be represented as entropy (S) production, and by Crocco's equation

TVS + 4 x 0 = Vh, (13)

* can be related to a vorticity (0) distribution since the total enthalpy (h.) is constant for this
clas of flows. One source of total pressure loss is the conical bow shock wave. However, these
losses are two to three orders of magnitude smaller than the values in the vortical regions.
The results shown in Figures 3 to 8 contain strong embedded shocks which clearly have an
associated total pressure loss. Comparing Figures 3 and 4 it can be seen that these losses
are approximately convected along streamlines. There are additional total pressure losses in
the shear layer from the wing tip and vortex core. The latter is clearly not convected along
streamlines. Many examples have been computed which have either no embedded shocks or
very weak ones, but which have total pressure losses of 30% or more. It is clear that some
mechanism other than shock waves is involved.

A possible explanation could be that the louses represent numerical error introduced by the
discretization process or added damping terms as represented by Equation (12). In fact this
seems to be true, but the interpretation is a bit surprising. Careful numerical studies have been
done [13,211 in which grid density and artificial viscosity constants P3 and v4 were varied by an
order of magnitude. The total pressure loss is extremely insensitive to these parameters. See,
for example, the table in the previous section. The total pressure loss was also found to be
insensitive to grid distribution, initial conditions, and convergence tolerance.
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Figure 13: Second order damping magnitude Figure 14: Equivalent Reynolds number

A clue to the ource of the losses can be found by comparing the magnitude of the second
order damping terms with the sink term H in Equation 12 as shown in Figure 13 taken from
[18]. The results are for a A = 75* flat plate delta wing at M. = 1.3, a = 100 with a 128 x 128
cell grid. It can be own that in the feeding sheet region, the vortex core, and around an
embedded shock under the vortex, the damping terms are significant.

Further insight can be obtained by looking at a simplified equation set corresponding to the
one-dimensional continuity and momentum equations [13]

a (P ) P, a (14)

4, (pu, + P) is= 2(U (15)



where the numerical diffusion coefficients have been denoted by Z. Differentiating momentum
and using continuity yields

au ap 2u a2 aP P(1u
+ = +E,-2+U(EU- ll) 2 + (16)

Now, if i, = i,, i.e. the same artificial viscosity formulation is used for both continuity and
momentum equations which is the usual procedure, then there are only two added terms. The
first is a diffusion term, while the last one is a convective term modifying the coefficient of a.
Powell [13] used this idea to define an effective numerical Reynolds number .- i which varies
throughout the flow field due to mesh resolution, the magnitude of the pressure switch, and the
value of . Figure 14 taken from [13] shows the magnitude of the numerical Reynolds number
for the same wing as Figure 13 but at M,,. = 1.1, a = 10*. An embedded grid was used such
that in the region of interest the grid density is 256 x 256. Even for such a fine grid, it can be
seen that the effective Reynolds number in the primary vortex core is about 103!

It is worth keeping in mind that most Navier-Stokes algorithms contain artificial diffusion
effects (whether added explicitly as herein or included implicitly as with upwind methods)
which are needed for the Euler part of the algorithm. Unless the grid is extremely fine in the
vortex region, the artificial diffusion terms probably dominate the real viscous terms in such
calculations.

Another interesting numerical result can be understood from Equation 16. A calculation
was done in which the second order damping was suppressed from the continuity equation
(Z, = 0) but retained in all the other equations. This had a strong influence on the maximum
total pressure loss. It can be seen from (16) that the coefficient io, - i, does not zero out and an
added diffusion term results. By explicitly correcting for this, the calculations with suppressed
second differencing damping in the continuity equation gave the same total pressure loss as the
original computations. So the magnitude of the total pressure los is sensitive to the form of
the added viscosity, but not to its magnitude. Comparisons between the present finite volume
algorithm and results from other algorithms have not shown significant differences, except for
the results of Marconi [221 discussed in the last paragraph of this section.

Computational results indicate that the maximum total pressure loss is directly related to
the aerodynamic parameters. Variations of Mach number, angles of attack, sweep, and yaw, as
well as body geometry all affect the total computed pressure loss in a consistent way. That is,
increasing the angle of attack produces stronger vortices and greater total pressure loss as is
illustrated in the next section.

The above evidence can be summarized as follows. In the primary vortex core and the
shear layer emanating from the wing tip, the added artificial viscosity terms are significant
and produce a total pressure loss in a manner similar to what the actual fluid viscosity would
produce. The intriguing question is why the total pressure loss is insensitive to the magnitude of
the numerical diffusion coefficient. There are different explanations for the core and shear layers.
For the core region, the circumferential velocity is brought to zero (see Figure 7) producing
a loss. Powell's [13,231 analytical model for a high Reynolds number conical incompressible
viscous vortex shows that the only parameter which sets the maximum total pressure loss is the
swirl velocity at the edge of the core. As can be seen from the table in the previous section, this
parameter is also independent of mesh spacing for the supersonic conical flows. For the shear
layer 1211, the added viscous terms together with the discrete nature of the solution produce a
vortex "sheet' with a thickness related to the mesh spacing. The velocity magnitude should
be the same on either side of the sheet, but the direction changes as dictated by the strength
of the sheet. Traversing across the sheet, the velocity magnitude will have a minimum in the
center leading to a total pressure los. The reader is referred to [13,23,21,241 for the detailed
discussion of these arguments.



The question remains as to whether the artificially introduced total pressure loss is related
to the real total pressure loss. Comparisons with measured pitot pressure as given in the
previous section and total pressure as given in the next section indicate that although the

* numerical losses may not be exact, they are a good approximation for compressible flows. For
incompressible flows, the agreement is not as good [251, but the studies are not as thorough.
The artificial diffusion terms are similar to, but different than, the real diffusion terms even
for laminar flows. For Reynolds numbers characteristic of aeronautical applications, the vortex
cores will be turbulent. A more physically based numerical viscosity model would be helpful in
establishing the accuracy of the predicted total pressure losses.

The final remark of this section addresses the issue of isentropic vortex cores. Marconi
[22] has suggested that the correct solution of the Euler equations should only have shock
induced total pressure losses. He has used the A-scheme which integrates the equations in a
charactersitic form. Entropy production must be introduced explicitly which only occurs at
shock waves. Vortical flows have been computed with zero total pressure losses. By Crocco's
equation (13) this means the vorticity and velocity vectors are aligned. The results of these
calculations show that the vortex position, surface pressures, and other global features of the
flow are in close agreement with solutions which have total pressure lossm [22]. Powell [13]
modified the present solution algorithm by overriding the strearnwise momentum equation with
the constant total pressure requirement. Although the iterative convergence rate is poorer,
solutions can be obtained and compared with the "lossy" ones. In agreement with Marconi, the
global features are the same, but the values of parameters in the vortex cores are different. In
particular, the streamwise velocity and Mach number are greater. Comparison with the pitot
pressure measurements of Monnerie and Werl6 [16] shows much poorer agreement. The present
authors feel that the desirable solution of the Euler equations is that which models a viscous
flow in the limit of Re - oo. The solutions with total pressure losses due to artificial viscosity

* are more realistic than those with no total pressure loss. Either one seems to be acceptable
for prediction of surface pressures and hence forces. However, the two approaches may give
different results regarding the prediction of vortex bursting in three-dimensional calculations
as total pressure losses can play a role in this phenomenon [26].

Three-Dimensional Solutions

Although the conical Euler model is suitable for studying some of the basic features of
leading edge vortex flows, a fully three-dimensional model is needed for realistic wing geometries
as well as for subsonic freestream Mach number conditions. In this section, some results using
two different grid topologies are presented and compared to experimental data for M.. = .85.
The grids are rather coarse and, therefore, the results should be considered as exploratory. The
calculations are for the A = 65* sharp edge cropped delta wing geometry discussed by Elsenaar
and Biitefisch [7]. Much more refined grid solutions for this wing are presented by Wagner and
Hitzel [27] and Kumar and Das [28].

The first set of calculations were done by Malecki [29] using an 0-0 grid supplied by Rizzi
and his co-workers (e.g. [8]). A total of 37,768 computational cells were in the field with 2048
cells adjacent to the wing surface. Although 1/16 of the total cells are on the wing, there are
only 16 cells between wing and far field. From the conical Euler studies, this is not adequate to
give good resolution of the vortex. Also the 0-0 grid has significant skewness near the cropped
tip. Convergence difficulties from this were solved by raising Y2 to .075 in this area. Only 10*
angle of attack was reported by Malecki.

The second set of calculations were done by Goodsell [25] who modified Roberts' program
to handle an O-H grid. In planes perpendicular to the flow, an 0 grid is generated similar to



that used for the conical Euler calculations. A total of 73,728 cells with 768 on the wing surface
were used. There are only 12 chordwise stations on the wing, but there are 48 cells between the
wing and the far field. Since the vortical flow does not vary rapidly in the streamwise direction,
this grid provides better resolution of the croesflow effects than the 0-0 grid. However, the
streamwise transonic effects such as shocks will be poorly resolved. The O-H grid has less skew-
ness than the 0-0 grid, and has a topology which is more flexible for complicated geometries.
Goodsell reported results for a = 10, 20°, 240, and the former two are discussed here.
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Figure 15: Surface Mach Number, 0-0 grid. Figure 16: Surface Mach Number, O-H grid.
s= 10*, MI. = .85. a = 10*, MCI = .85.

The results for a = 100 correspond to M, = .38, a. = 22.6* placing them well within the left
hand middle region of Figure 2. Leeside surface Mach number contours for the two topologies
are shown in Figures 15 and 16. The footprint of the vortex is evident, and the flow underneath
it is supersonic. The 0-0 grid gives a maximum surface Mach number of 1.32 while the 0-H
grid with better resolution off the wing surface reaches 1.60. The flow is just supersonic over
the mid portion of the wing demonstrating slight streamwise transonic effects for this lowest
angle of attack. Finally, both solutions show a shock wave at the tapered tip which is aligned
with the strearwise direction. The supersonic outboard flow under the vortex passes through
this shock to turn downstream.

Figures 17-1) compare the computed surface pressure coefficients for the O-H grid (lines)
with the measurements (symbols) at 30%, 60%, and 80% chord locations. The windward side
agreement is good except at 30% chord where the centerbody may have an effect. On the
leeward side, it is seen that the calculations predict significantly more suction and that the
vortex is located further outboard compared to the experiments. In general the agreement is
not too good. Figure 20 shows similar results for the 0-0 grid at 80% chord location. These
calculations show lees of a suction peak than the O-H grid results and in general have poorer
resolution. The 0-0 grid calculations have been compared with Rizzi's code using exactly the
same grid and are in good agreement [29].

Total pressure loss contours for the O-H grid calculations at 78% chord are shown in Figure
21. Experimental [301 total pressure contours at the 60% chord location are shown in Figure
22 for a wing with the same planform but flat upper surface. The computed results show a
los of 38% while the measurements indicate a loss of 30-40% which is in qualitative agreement.
Malecki's calculations with the 0-0 grid predicted 44% losses at about the 90% chord location.

The results for a = 200 correspond to M, = .45,o, = 40.7*, again in the left hand middle
region of Figure 2. All results are from the O-H grid study [25], and a value of 2 = .1 was
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a = 10*, M = .85. a=10 , M = .85.
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needed for convergence. The surface Mach number contours of Figure 23 show that the flow is
highly transonic. A Mach number of 2.4 is reached under the vortex, and the streamwise flow
in the center of the wing is mostly supersonic. The more refined calculations of Wagner and
Hitzel [27] show that this supersonic region is terminated by a cross flow shock which interacts
with the vortex. The present grid is too coarse to resolve this. The clustering of the contours
indicates that there is a shock wave under the vortex. The surface Cp results at the 60% chord,
Figure 24 location likewise indicate a strong suction peak terminated by a shock wave. The
agreement with the measured C., data is poor on the leeside due to the viscous effects. The
secondary vortex and shock wave-boundary layer interactions significantly reduce the suction
peak. A Navier-Stokes model is needed for accurate surface pressure predicitions in this speed
regime. The computed and measured total pressure contours are shown in Figures 25 and 26
respectively. Again, there is reasonable agreement between the computed loss of 56% and the
measured value of - 60%.
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Conclusions

Leading edge vortices introduce transonic crosuflow effects due to their accompanying high
* swirl velocities. Based upon both calculations and experiments, embedded transonic zones and

shock waves are the norm rather than the exception. These effects are in addition to the classical
transonic flow features of lifting wings. Numerical solutions of the Euler equations for sharp edge
wings appear to model the main effects of the primary vortex. Both analytical and numerical
evidence point to the artificial viscosity terms as the source of vorticity. The numerical damping
models routinely used by most algorithms seem to lead to realistic total pressure losses. More
physically based artificial viscosity models would be desirable. Total pressure deficits may
be important in the prediction of vortex bursting. For transonic freestream Mach numbers,
the influences of secondary vortex formation and shock wave-boundary layer interaction are
important and outside the capabilities of an Euler equation model. For supersonic freestream
conditions, the secondary vortex effects have less influence on the leeside pressure distribution.
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